Siklus Refrigerasi Kompresi-Uap Ideal
The Ideal Vapor-Compression Refrigeration Cycle
Siklus refrigerasi kompresi-uap ideal merupakan kebalikan siklus Carnot, di mana fluida kerja (disebut juga refrigeran) harus menguap seluruhnya sebelum dikompresi pada kompresor, sehingga turbin digantikan peranannya oleh katup ekspansi (bisa berupa katup throttle atau pun pipa kapiler). Seperti terlihat pada skema dan diagram T-s di atas, ada empat proses yang terjadi, yaitu proses 1-2 kompresi isentropik pada kompresor, proses 2-3 pelepasan kalor pada tekanan konstan di kondensor, proses 3-4’ ekspansi isentropik pada katup ekspansi, dan proses 4’-1 penyerapan kalor pada tekanan konstan di evaporator.
Dari gambar di atas, alur refrigeran dimulai pada kondisi 1 saat masuk kompresor sebagai uap jenuh kemudian dikompresi secara isentropik sampai tekanan kondensor. Temperatur refrigeran naik selama proses kompresi ini di atas temperatur lingkungan. Refrigeran kemudian masuk ke kondensor sebagai uap superheat pada tingkat keadaan 2 dan keluar sebagai cairan jenuh pada tingkat keadaan 3 sehingga terjadi pelepasan kalor ke lingkungan. Refrigeran pada tingkat keadaan 3 ini diekspansi sampai tekanan evaporator melalui katup ekspansi atau pun pipa kapiler. Temperatur refrigeran menjadi turun di bawah temperatur ruangan yang dikondisikan selama proses ini. Refrigeran masuk ke evaporator pada tingkat keadaan 4 (diidealisasi sebagai ekspansi isentropik pada tingkat keadaan 4’) sebagai campuran saturasi dua-fasa (cair-uap) dengan kualitas rendah, kemudian refrigeran menguap seluruhnya dengan menyerap kalor dari ruangan yang dikondisikan tersebut. Refrigeran keluar dari evaporator sebagai uap jenuh dan masuk kembali ke kompresor pada tingkat keadaan 1. Seluruh proses siklus di atas bersifat reversibel secara internal, kecuali untuk proses ekspansi yang irreversibel (karena trotel tidak mungkin isentropik sehingga perlu diidealisasi atau berperan sebagai turbin untuk memudahkan analisis).
Efisiensi siklus refrigerasi ini dinyatakan dalam koefisien unjuk kerja (COP), di mana tergantung dari efek refrigerasi (Load/QL) dan kerja netto (Wnet,in). Secara teoritis COP maksimum ini tergantung dari temperatur dua sisi (Tcool dan Thigh), di mana COP akan naik bila beda temperatur keduanya semakin kecil, dengan kata lain Tcool naik atau Thigh turun.
siklus Rankine pada kereta uap ... ???
BalasHapusSiklus rankine setau saya untuk PLTU mas .
BalasHapus